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Project Overview 

 Participants: 
 SRI International, Menlo Park, CA 
 ATMI, Inc., Danbury, CT 
 University of Toledo, OH 
 DOE-National Energy Technology Center 

 Period of Performance: 
 10-1-2008 through 9-30-2012 

 Funding: 
 U.S.: Department of Energy: $1.35 million 
 Cost share: $0.45 million 

 Total: $1.8 million 
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Project Objectives 

 Validate the performance of novel carbon 
sorbents for CO2 capture on a bench-scale 
system for post-combustion applications.  

 Perform parametric experiments to determine 
the optimum operating conditions. 

 Evaluate the technical and economic viability 
of the technology. 

 Field test at the bench-scale level with an 
actual flue gas. 

 Pilot-scale testing in a future phase. 
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Block Flow Diagram 
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Basic Principles 

 Adsorption of CO2 from flue gas on a selective 
and high capacity carbon sorbent. 

 Ability to achieve rapid adsorption and 
desorption rates (no solid state diffusion limit). 

 Minimize thermal energy requirements 
 Ability to desorb as pure CO2. 
 A falling micro-bead sorbent reactor geometry 

integrates the adsorber and stripper in a 
single vertical column: 
 Provides a low pressure drop for gas flow and 

minimize physical handling of the sorbent. 
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Sorbent Attributes: Chemical Properties 

 High CO2 capacity: 
 The sorbent has a high capacity for CO2 adsorption 

(20 wt% at 1 atm CO2) and good selectivity for CO2 
over other flue gas components.  

 Rapid adsorption and desorption rates:  
 The adsorption of CO2 occurs on the micropores of 

the sorbent with very low activation energy 
(<5kJ/mole), allowing rapid cycling of the sorbent. 

 Low heat of adsorption and desorption:  
 The relatively low heats (<28 kJ/mole) indicate that 

this process has a low heat demand for regeneration 
and low cooling requirements.  

 High hydrothermal stability:  
 Direct heating with steam can be used for CO2 

desorption.  
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 Sorbent Attributes: Physical Properties 

 Mechanical robustness for long lifetime:  
 Hard and attrition resistant; Unusually tough for a 

high surface area (1600 m2/g) porous solid 
 ASTM Test D-5757: Attrition resistance very high:  

Weight loss <0.01%/hour 
 Spherical morphology of the sorbent 

granules:  
 Sorbent spheres (100 to 300 µm) allows a smooth 

flow 
 This free-flowing, liquid-like characteristic allows 

the use of commercially available structural packing 
 Low heat capacity:  
 The low heat capacity of the sorbent (1 J/g/K) 

and low density (1 kg/m3) minimizes the 
thermal energy needed to heat the sorbent to 
the regeneration temperature 

 High thermal conductivity:  
 The thermal conductivity of 0.8 w/m-K 

enables rapid thermal equilibrium between the 
sorbent surface and interior 
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Summary of Previous Reported Results 

 Determined several physical and chemical 
properties of the advanced carbon sorbent in the 
context of flue gas CO2 capture.  

 Demonstrated an unique sorbent and a reactor 
geometry for CO2 capture under simulated flue 
gas conditions in a 1000-cycle test: 
 Achieved ~99% CO2 capture from air-CO2 gas mixture 
 Achieved >98% pure CO2 during regeneration 
 Capable of rapid adsorption and regeneration 
 Fluid-like flow properties 
 High attrition resistance 
 Integrated absorber-desorber geometry 
 Minimize solids handling 
 Minimize heat exchanger requirements 
 Stable operation over 1000 cycles 
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Comparison of CO2 Capture Costs 

Base Case Econamine FG+ Carbon Sorbent
Carbon Capture No Yes Yes
Gross Power Output (kW) 580,400 662,800 642,113
Auxilary Power Requirement (kW) 30,410 112,830 98,751
Net Power Output (kW) 549,990 549,970 543,363

Net Plant HHV Efficiency (%) 39.30 28.40 36.00
Net Plant HHV Heat Rate Btu/kWh) 8.69 12.00 9.47
Coal Flow Rate(lb/h) 409,528 565,820 441,178
CO2 Emissions (lb/MWh) 972,382 134,193 102,924

Power Plant Capital (¢/kWh) 3.17 5.96 4.40
Power Plant Fuel (¢/kWh) 1.42 1.96 1.55
Variable Plant O &M (¢/kWh) 0.10 0.70 0.66
Fixed Plant (¢/kWh) 0.80 1.30 0.96
Power Plant Total (¢/kWh) 5.89 10.10 7.56

CO2 T, S, and M (¢/kWh) 0.00 0.56 0.54
Total Cost (¢/kWh) 5.89 10.66 8.10

Increase in COE (%) 0.00 80.20 37.20



Field Tests at the University of Toledo 

 Coal-fired steam boilers provide steam for 
its Health Science campus.   

 A stoker boiler operated with a low-sulfur 
coal to generate 15,0000 lb/h steam.   

 The flue gas from the boiler is sent to an 
electrostatic precipitator and then to a 
chimney.   

 No flue gas desulfurization or nitrogen 
oxide control was practiced at the plant 
(SO2 level ~60 ppm measured; NOx level: 
60 ppm estimated). 
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Schematic Diagram of the System 
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Coal-Fired Boiler Facility at UT 
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The CO2 Capture System Installed at UT 
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Absorber Section 
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Stripper Section 
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Operation at UT 

 The system was operated during the day time 
from 8 AM to 7 PM, about 6 days a week for one 
month (including shake-down runs). 

 The flue gas flow rate was about 200 standard 
liters/min. 

 CO2 concentration: 4.5% v/v. 
 SO2 concentration: 60 ppm reduced to ~1 ppm 

with the use of a FGD with sodium bicarbonate. 
 NOx control was not practiced. 
 Pressure drop across the adsorber: 0.4 in WC. 
 Total hours of operation: 130 hours (7,000 

cycles). 
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CO2 Capture Efficiency and Product Gas Purity 
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CO2 Capture Efficiency and product Gas Purity 
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General Observations During the Operation at UT 

 The system was able to reduce the CO2 
level from 4.5% to <0.05% (full regen). 

 We achieved steady-state operation with 
90% capture efficiency with >98% CO2 
purity in the product gas. 

 Sorbent flow: Smooth  
 sorbent inventory:1.2 kg.  
 Typical cycle time:  ~1 min.  

 No significant operational issues were 
observed. 
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Post Analysis 

 The sorbent was analyzed after the test: 
 N2  porosimetry 
 Thermo-gravimetric analysis in vacuum 
 CO2  adsorption isotherms 
 Trace metals analyses  plus  S, Cl, Hg 
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CO2 Isotherm at 298 K 
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Porosity Changes 
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N2 porosity properties 
Used Toledo ACS-2 Fresh Toledo ACS-2

Units E00178-091 ATMI-1174
BET SA m2/g 982 1036

t-MPV cc/g 0.353 0.372

H-K nm 0.533 0.537

D-R Eo J/mol 30.7708 30.6193

D-R-MPV cc/g 0.391 0.413

D-A-MPV cc/g 0.393 0.414

D-A Integer 1.9214 1.9437

D-Stoeckli nm 0.558 0.562



Trace Elements in the Sorbent 
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   Used Toledo ACS-2 
• Na  95 
• P  66 
• K  6 
• Ca  41 
• Mn  24 
• Fe  1234 
• Zn  15 
• Cl  611 
• S  132 
• Hg  0.31 

 Fresh Toledo ACS-2 
• Na  102 
• P  80 
• K  74 
• Ca  41 
• Mn  < 2 
• Fe  < 2 
• Zn  < 2 
• Cl  468 
• S  19 
• Hg  < 0.06 
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Future Plans  

 Field Testing: 
 Field test the process using a flue gas from 

an operating pulverized coal-fired boiler. 
 1000 h of operation 
 Effect of flue gas contaminants 
 Thermal management 

 Technology Transfer 
 SRI and ATMI are in touch with several 

utility and chemical companies for further 
development. 
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Team 
 SRI International 

 Dr. Gopala Krishnan – Associate Director (MRL) and PI 
 Dr. Marc Hornbostel, Senior Materials Scientist 
 Dr. Jianer Bao, Materials Scientist 
 Dr. Angel Sanjurjo – Materials Research Laboratory Director 

and Project Supervisor 
 ATMI Inc. 

 Sorbent developer, Industry perspective 
 Dr. Joshua B. Sweeney, Director, Business Development  
 Dr. Melissa Petruska, Materials Scientist 
 Dr. Donald Carruthers; Senior Research Scientist 

 University of Toledo 
 Dr. Glenn Lipscomb, Professor and Chairman, Chem. Eng. 
 Mr. Terry Yuecun, Graduate student, Chemical Engineering 

 DOE-NETL 
 Andrew O’Palko 
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