Development Novel Carbon Sorbents for Carbon Dioxide Capture

2012 NETL CO₂ Capture Technology Meeting July 9-12, 2012 in Pittsburgh, PA.

Project Overview

Participants:

- SRI International, Menlo Park, CA
- ATMI, Inc., Danbury, CT
- University of Toledo, OH
- DOE-National Energy Technology Center
- Period of Performance:
 - 10-1-2008 through 9-30-2012
- Funding:
 - U.S.: Department of Energy: \$1.35 million
 - Cost share: \$0.45 million
 - Total: \$1.8 million

Project Objectives

- Validate the performance of novel carbon sorbents for CO₂ capture on a bench-scale system for post-combustion applications.
- Perform parametric experiments to determine the optimum operating conditions.
- Evaluate the technical and economic viability of the technology.
- Field test at the bench-scale level with an actual flue gas.
- Pilot-scale testing in a future phase.

Block Flow Diagram

Basic Principles

- Adsorption of CO₂ from flue gas on a selective and high capacity carbon sorbent.
- Ability to achieve rapid adsorption and desorption rates (no solid state diffusion limit).
- Minimize thermal energy requirements
- Ability to desorb as pure CO₂.
- A falling micro-bead sorbent reactor geometry integrates the adsorber and stripper in a single vertical column:
 - Provides a low pressure drop for gas flow and minimize physical handling of the sorbent.

Sorbent Attributes: Chemical Properties

High CO₂ capacity:

 The sorbent has a high capacity for CO₂ adsorption (20 wt% at 1 atm CO₂) and good selectivity for CO₂ over other flue gas components.

Rapid adsorption and desorption rates:

- The adsorption of CO₂ occurs on the micropores of the sorbent with very low activation energy (<5kJ/mole), allowing rapid cycling of the sorbent.
- Low heat of adsorption and desorption:
 - The relatively low heats (<28 kJ/mole) indicate that this process has a low heat demand for regeneration and low cooling requirements.
- High hydrothermal stability:
 - Direct heating with steam can be used for CO₂ desorption.

Sorbent Attributes: Physical Properties

- Mechanical robustness for long lifetime:
 - Hard and attrition resistant; Unusually tough for a high surface area (1600 m²/g) porous solid
 - ASTM Test D-5757: Attrition resistance very high: Weight loss <0.01%/hour
- Spherical morphology of the sorbent granules:
 - Sorbent spheres (100 to 300 µm) allows a smooth flow
 - This free-flowing, liquid-like characteristic allows the use of commercially available structural packing
- Low heat capacity:
 - The low heat capacity of the sorbent (1 J/g/K) and low density (1 kg/m³) minimizes the thermal energy needed to heat the sorbent to the regeneration temperature
- High thermal conductivity:
 - The thermal conductivity of 0.8 w/m-K enables rapid thermal equilibrium between the sorbent surface and interior

Summary of Previous Reported Results

- Determined several physical and chemical properties of the advanced carbon sorbent in the context of flue gas CO₂ capture.
- Demonstrated an unique sorbent and a reactor geometry for CO₂ capture under simulated flue gas conditions in a 1000-cycle test:
 - Achieved ~99% CO₂ capture from air-CO₂ gas mixture
 - Achieved >98% pure CO₂ during regeneration
 - Capable of rapid adsorption and regeneration
 - Fluid-like flow properties
 - High attrition resistance
 - Integrated absorber-desorber geometry
 - Minimize solids handling
 - Minimize heat exchanger requirements
 - Stable operation over 1000 cycles

Comparison of CO₂ Capture Costs

I	Base Case	Econamine FG+	Carbon Sorbent
Carbon Capture	No	Yes	Yes
Gross Power Output (kW)	580,400	662,800	642,113
Auxilary Power Requirement (kW)	30,410	112,830	98,751
Net Power Output (kW)	<u>549,990</u>	<u>549,970</u>	<u>543,363</u>
Net Plant HHV Efficiency (%)	39.30	28.40	36.00
Net Plant HHV Heat Rate Btu/kWh)	8.69	12.00	9.47
Coal Flow Rate(lb/h)	409,528	565,820	441,178
CO2 Emissions (lb/MWh)	972,382	134,193	102,924
Power Plant Capital (¢/kWh)	3.17	5.96	4.40
Power Plant Fuel (¢/kWh)	1.42	1.96	1.55
Variable Plant O &M (¢/kWh)	0.10	0.70	0.66
Fixed Plant (¢/kWh)	0.80	1.30	0.96
Power Plant Total (¢/kWh)	<u>5.89</u>	<u>10.10</u>	<u>7.56</u>
CO2 T, S, and M (¢/kWh)	0.00	0.56	0.54
Total Cost (¢/kWh)	<u>5.89</u>	<u>10.66</u>	<u>8.10</u>
Increase in COE (%)	<u>0.00</u>	<u>80.20</u>	<u>37.20</u>

Field Tests at the University of Toledo

- Coal-fired steam boilers provide steam for its Health Science campus.
- A stoker boiler operated with a low-sulfur coal to generate 15,0000 lb/h steam.
- The flue gas from the boiler is sent to an electrostatic precipitator and then to a chimney.
- No flue gas desulfurization or nitrogen oxide control was practiced at the plant (SO₂ level ~60 ppm measured; NO_x level: 60 ppm estimated).

Schematic Diagram of the System

Coal-Fired Boiler Facility at UT

The CO₂ Capture System Installed at UT

Absorber Section

Stripper Section

Operation at UT

- The system was operated during the day time from 8 AM to 7 PM, about 6 days a week for one month (including shake-down runs).
- The flue gas flow rate was about 200 standard liters/min.
- CO_2 concentration: 4.5% v/v.
- SO₂ concentration: 60 ppm reduced to ~1 ppm with the use of a FGD with sodium bicarbonate.
- NOx control was not practiced.
- Pressure drop across the adsorber: 0.4 in WC.
- Total hours of operation: 130 hours (7,000 cycles).

CO2 Capture Efficiency and Product Gas Purity

CO2 Capture Efficiency and product Gas Purity

General Observations During the Operation at UT

- The system was able to reduce the CO2 level from 4.5% to <0.05% (full regen).</p>
- We achieved steady-state operation with 90% capture efficiency with >98% CO2 purity in the product gas.
- Sorbent flow: Smooth
 - sorbent inventory:1.2 kg.
 - Typical cycle time: ~1 min.
- No significant operational issues were observed.

Post Analysis

- The sorbent was analyzed after the test:
 - N₂ porosimetry
 - Thermo-gravimetric analysis in vacuum
 - CO₂ adsorption isotherms
 - Trace metals analyses plus S, CI, Hg

CO2 Isotherm at 298 K

Porosity Changes

N2 poros	sity pr		
		Used Toledo ACS-2	Fresh Toledo ACS-2
	Units	E00178-091	ATMI-1174
BET SA	m2/g	982	1036
t-MPV	cc/g	0.353	0.372
H-K	nm	0.533	0.537
D-R Eo	J/mol	30.7708	30.6193
D-R-MPV	cc/g	0.391	0.413
D-A-MPV	cc/g	0.393	0.414
D-A Integer		1.9214	1.9437
D-Stoeckli	nm	0.558	0.562

Trace Elements in the Sorbent

	Used To	oledo ACS-2	F	resh	Toled	o ACS-2
•	Na	95	•	Na	10	2
•	Ρ	66	•	Ρ	80	
•	Κ	6	•	Κ	74	
•	Са	41	•	Ca	41	
•	Mn	24	•	Mn	< 2	2
•	Fe	1234	•	Fe	< 2	2
•	Zn	15	•	Zn	< 2	2
•	CI	611	•	CI	46	8
•	S	132	•	S	19	
•	Hg	0.31	•	Hg	< (0.06

Future Plans

• Field Testing:

- Field test the process using a flue gas from an operating pulverized coal-fired boiler.
 - 1000 h of operation
 - Effect of flue gas contaminants
 - Thermal management
- Technology Transfer
 - SRI and ATMI are in touch with several utility and chemical companies for further development.

Team

SRI International

- Dr. Gopala Krishnan Associate Director (MRL) and PI
- Dr. Marc Hornbostel, Senior Materials Scientist
- Dr. Jianer Bao, Materials Scientist
- Dr. Angel Sanjurjo Materials Research Laboratory Director and Project Supervisor

ATMI Inc.

- Sorbent developer, Industry perspective
- Dr. Joshua B. Sweeney, Director, Business Development
- Dr. Melissa Petruska, Materials Scientist
- Dr. Donald Carruthers; Senior Research Scientist
- University of Toledo
 - Dr. Glenn Lipscomb, Professor and Chairman, Chem. Eng.
 - Mr. Terry Yuecun, Graduate student, Chemical Engineering
- DOE-NETL
 - Andrew O'Palko